If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11z^2-55z=0
a = 11; b = -55; c = 0;
Δ = b2-4ac
Δ = -552-4·11·0
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-55}{2*11}=\frac{0}{22} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+55}{2*11}=\frac{110}{22} =5 $
| 5(x+10)+x=2(x+4)-2 | | 60x-10=20 | | x-0.2x=28 | | 4x+6/2=5x | | -5(x+7)=9(x-1)+22 | | 2x^2-9x-65=x^2 | | v*11=7 | | r^2-12r-28=-10 | | 5x+8=-3x+8 | | V(x)=x(16-2x)(14-2x) | | x*7=11 | | 3(4=5y)=15 | | y2–8y–9=0 | | 6(x+3)=23 | | 3h2+11h+6=0 | | 10=(r/3)+8 | | p^2+8p-13=-41 | | 12f=203f= | | 3x^2–36=0 | | 3x2–36=0 | | 21/n=64/64 | | 7-10x=67# | | 3x(2x-1)(x+(-7/6))=0 | | 9+2(x-7)=2-9(x-7) | | 3x(2x-1)(x+7/6)=0 | | 0=-4.9x^2+140x+15 | | 12+4a–3a–12+5a=16–2a–7–9+2a | | 5^-x-2=9^5x | | 4x+3=9-3x | | -3a=-45 | | 5(x+4)=2(2x-30) | | 1-3n=11 |